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CONTRIBUTIONS TO THE GEOLOGY OF URANIUM

PRELIMINARY STUDY OF RADIOACTIVE LIMONITE IN
COLORADO, UTAH, AND WYOMING

By T. G. Lovering and E. P. Beroni

ABSTRACT

Nine radioactive-limonite localities of different types were sampled during the
spring and fall of 1953 in an effort to establish criteria for differentiating limonite
outerops associated with uranium or thorium deposits from limonite outerops not
associated with such deposits. The samples were analyzed for uranium and
thorium by standard chemical methods, for equivalent uranium by the radio-
metric method, and for a number of common metals by semiquantitative geo-
chemieal methods. Correlation coefficients were then calculated for each of the
metals with respect to equivalent uranium, and to uranium, where present, for
all the samples from each locality. The correlation coefficients may indicate a
significant association between uranium or thorium and certain other metals.
Occurrences of specific metals that are interpreted as significant vary consider—}
ably for different uranium localities but are more consistent for the thorium
localities.

Samples taken from radioactive outerops in the vicinity of uranium or thorium
deposits can be quickly analyzed by geochemical methods for various elements.
Correlation coefficients can then be determined for the various elements with
respect to uranium or thorium; if any significant correlations are obtained, the
elements showing such correlation may be used as indicators of uranium or thor-
ium elsewhere in the area. Soil samples of covered areas in the vicinity of the
radioactive outerop may then be analyzed for the indicator elements and any
resulting anomalies used as a guide for prospecting where the depth of overburden
is too great to allow the use of radiation-detecting instruments. Changes in color
of limonite stains on the outcrop may also be a useful guide to ore in some areas.

Correlation eoefficients of the associated indicator elements, used in eonjunetion
with petrographic evidence, may be useful, too, in interpreting the origin and
paragenesis of radioactive deposits.

INTRODUCTION

The radioactive-limonite localities discussed in this report were
examined in order to determine whether field criteria could be found
that would differentiate between indigenous radioactive limonite and
transported radioactive limonite. Nine localities with differing geol-
ogic environments and types of radioactive material were selected.
At each locality samples were taken of both the radioactive and non-
radioactive material; wherever possible, a continuous channel sample,
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340 CONTRIBUTIONS TO THE GEOLOGY OF URANIUM

consisting of individual samples representing 1-foot segments, was
taken across the radioactive-limonite zone and into the nonradio-
active material on both sides. Changes in color and texture were
noted. The samples were analyzed for equivalent uranium and for
uranium and other metals for which geochemical field tests are avail-
able. The purpose of the analyses was to determine whether any of
these metals show significant correlations, or dispersion halos,. with
respect to uranium or thorium in the outcrop.

Semiquantitative spectrographic. analyses for about 60 elements
were obtained on the samples from some of the localities. The sensi-
tivity of both spectrographic and geochemical analysis varies greatly
from one element to another. The spectrograph will reveal the pres-
ence of as little as 0.00005 percent silver in a sample but cannot detect
mercury in concentrations less than 0.1 percent. The concentrations
of the elements are reported in semiquantitative spectrographic analy-
ses in powers of 10 with (4) plus or (—) minus appended, when ap-
plicable, to indicate whether the concentration is near the top or
bottom of the range, thus: 0.X+=0.5-1.0 percent, 0.X=0.2-0.5
percent, 0.X~=0.1-0.2 percent; comparisons of this type of semi-
quantitative results with those obtained by quantitative methods,
either chemical or spectrographic, show that the assigned group in-
cludes the quantitative value about 60 percent of the time. The
geochemical analyses are reported in parts per million rather than in
percent, and are accurate approximately to the first significant figure.

Most of the field examinations were made by the authors during
the latter part of October 1953. The Lucky Break iron mine was
visited by T. G. Lovering and W. R. Griffitts in June 1953, and the
mines in the Golden Gate Canyon area were visited and sampled by
E. P. Beroni early in November 1953. The localities discussed in
this report are shown on the index map (fig. 34).

Correlation coefficients have been calculated for each group of
samples in an attempt to express mathematically the relative degree
of association between the radioactive elements and some of the other
metals in the sample. The authors feel that where high correlations
were obtained the possibility of a significant association warrants
further investigation, even though the small number of samples ob-
tained from the various localities does not constitute a valid approx-
imation to a representative statistical sample.

The correlation coefficients were determined by a modification of
the method used.by Miesch and Shoemaker (1953, written communi-
cation). In calculating the correlation coefficients, all assays were
first expressed in parts per million in order to make relative concen-
trations of the various elements more readily apparent. The loga-
rithms.of the assays were then tabulated and average values for the
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FIGURE 34.—Index map showing Iocalities examined for radioactive limonite.

log concentrations of each element were determined. The use of log-
arithms was considered preferable to the use of straight assay data
because of the extreme range in concentrations represented by the
assays. (The logarithmic transformation greatly decreases the effect
of a few extremely high values, thus making correlations more nearly
representative of the whole group of assays involved.) Next, for each
element, the deviation from the average was determined for each log
assay; these deviations were then squared and the sum of the squares
was found so that the standard deviation could be calculated accord-
ing to the formula:

- D

o=

n—1
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where o=standard deviation, D=deviation from the mean log assay,
n=number of assays.

The individual log assays for equivalent uranium and for uranium,
where present, were next multiplied by the corresponding log assays
of .each of the other elements in turn, and the mean value of the
products determined thus:

where M =mean product, Z=summation, ¢=uranium log-assay value,
b=Ilog-assay value of some other element, n=number of assays. The
correlation coefficients were then calculated according to the formula

where r=correlation coefficient, a=log assay eU or U, b=log assay
of one of the other elements, sa=standard deviation for U, 7b=stand-
ard deviation for the other element. A perfect positive correlation is
+1, a perfect inverse relationship is indicated by a correlation of —1,
and a completely random distribution of two elements with respect to
each other is represented by a correlation of 0. For normally dis-
tributed populations, the threshold of significance of a correlation
coefficient is inversely proportional to the number of samples ana-
lyzed. Most of the individual sample groups collected for this study
contained no more than 5-15 samples, so only those correlation co-
efficients exceeding +0.4 were considered significant (Dixon and
Massey, 1951, p. 164).

Only those elements were correlated that showed a significant
variation in concentration from one sample to the next in each group.
No elements were correlated whose concentration fell below the
threshold of analytical sensitivity in more than 25 percent of the
samples within a given group. If the concentration of an element
fell below the threshold of sensitivity in only a few samples within
a group, the concentration of that element was arbitrarily assigned
to the middle of the next lower order of magnitude. For example,
the arsenic concentration of 2 samples from the Little Johnny mine
area was reported as <10 ppm (parts per million); these samples
were assigned a value of 5 ppm. If a few analyses were reported as
<1 ppm, the same procedure was followed, but all assays were multi-
plied by 10 to avoid the use of negative logarithms.

The writers wish to express their appreciation to the analysts of
the U. 8. Geological Survey who furnished the analytical data on
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which this report is based. H. E. Crowe and J. H. McCarthy made
the geochemical determinations, and S. P. Furman and R. F. Dufour
made the  uranium, equivalent uranium, and thorium analyses.
Thanks are also due to many members of U. S. Geological Survey
field parties for valuable aid in finding outcrops for study and for
assistance in understanding their geologic setting. The cooperation
of the various owners in allowing access to their properties is much
appreciated. The work was done on behalf of the Division of Raw
Materials of the U. S. Atomic Energy Commission.

LOCALITIES
YELLOW CAT AREA, GRAND COUNTY, UTAH

The Yellow Cat area, Thompson district, is principally within
T. 22 S., Rs. 22 and 23 E., in east-central Grand County, Utah.
The rocks exposed are the Summerville and Morrison formations of
Jurassic age and consist of alternating conglomerates, sandstones,
and mudstones of continental origin. More than a hundred thousand
tons of uranium and vanadium ore has been produced from the area;
nearly all of it came from sandstone beds in the Salt Wash member of
the Morrison formation which overlies the Summerville formation
with slight disconformity and is overlain conformably by the Brushy
Basin member of the Morrison formation; the Brushy Basin member
consists predominantly of red mudstones. All the rocks in the area
dip gently to the north. A few gentle folds are present locally, but
there is little evidence of faulting.

The uranium-vanadium deposits of the Yellow Cat area have been
examined and described by many geologists during the past fifty years.
The most recent, and probably the most comprehensive, published
report on the area was written by Stokes (1952).

SAMPLES AND ANALYSES

Thirteen samples were collected from the Yellow Cat area. All the
samples were analyzed by geochemical-prospecting methods for a num-
ber of common elements, and a separate split of each sample was
analyzed fluorometrically for uranium and radiometrically for equiv-
alent uranium. [These analyses are shown in table 5, p. 372.]

The variation of equivalent uranium and uranium and various other
metals in a 7-foot vertical channel sample, taken on the Cactus Rat
claim, is shown in-figure 35. In order to avoid confusion, data are
graphed only for those metals that appeared to show significant changes
in concentration and for which assays were available on all samples,

468040-—59——2
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FIGURE 35.—Graph showing varmtwns in equivalent uranium and uranium and other metals in the 7- foot
vertical channel sample from the Cactus Rat claim, Grand County, Utah.

‘SAMPLE F

" Correlation coefficients for eight metals with respect t6 both uranium
and equivalent uranium are shown in the table below.

Correlation coefficients, Yellow Cat area

- {13 samples] 4 .
eU U ) - eU
______ 140.38 40.29 | Cueeeeeiiiaanaan —0.07
______ 24,70 24,65 Vo 24,88
______ 24,55 11,46 Mo .o 1— 47
...... +.09 +.17 Fe. o occaee —-. 01

1 Possibly significant. 2 Probably significant.

—0. 06
24,70
1— 45
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CONCLUSIONS

Information derived from samples taken in the Yellow Cat area
suggests that geochemical prospecting for elements associated with
uranium may be a useful tool in exploration, but there is no visible
characteristic of the limonite that is diagnostic of proximity to
uranium deposits. .

A comparison of thin and polished sections of sample F57 with
those of sample F'58 does not reveal any significant difference in the
nature of the iron oxides that can be correlated with the difference in
the uranium content. Red hematite breccia in a veinlet cutting
goethite-impregnated sandstone (sample F61) is unexpected because
of the proximity of this ferric oxide to carbonaceous material that
might have been expected to reduce the iron to the ferrous state.
The work of Tunnell and Posnjak (1931) has shown that under
atmospheric conditions in the Fe,0,—H,0-SO; system, goethite is
stable below 130°C and hematite above that temperature. The
presence of gypsum indicates that the sulfate ion was probably avail-
able. The late hematite thus suggests that moderately hot solutions
may have come in along small fractures at some time after the lithifi-
cation of the sandstone and the development of early goethite.

The variation in metal content of the channel sample shown in
figure 35 suggests leaching of iron from a zone about 2 feet below the
surface and reconcentration of this iron in the surface layer. Iron
content appears to be completely unrelated to uranium content,
manganese shows an inverse relationship with uranium, but arsenic,
antimony, and molybdenum correlate positively with uranium.

A study of the correlation coefficients shown in table on p. 344
also brings out the random distribution of uranium with respect to
iron, its negative correlation with manganese, and its good positive
correlation with arsenic and ‘antimony. In addition, the table illus-
trates that vanadium gives a good correlation with uranium, but that
for the total 13 samples, molybdenum does not correlate as well with
uranium as it appeared to in the 7 samples that constitute the channel
sample (table 5, p. 372). Zine and copper, like iron, appear to have
a more or less random distribution with respect to uranium.

"If more detailed samplmg in this area should confirm the relation-
ship between uranium and arsenic, antimony, and vanadium sug-
gested by this preliminary work, géochemical prospecting for these
indicator elements might be of value in the search for additional
uranium deposits in the Yellow Cat area, where depth of overburden
precludes the use of Geiger counter or scintillation counter.

:: The close association of antimony and arsenic, as well as vanadium,
with the uranium indicates that these two minor elements may: also
be present in small amounts in carnotite, which is the major ore
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mineral of the district. It also suggests the possibility that they
were present in the primary mineral from which the carnotite was
derived.

SNOW-BONNIEBELL CLAIMS, UINTAH COUNTY, UTAH

The Snow-Bonniebell claim group is in secs. 17, 18, and 24, T. 6 S,,
R. 24 E,, in the eastern part of Uintah County, Utah. The claims
are at an altitude of about 5,500 feet on the crest and the south slope
of a hogback ridge of sandstone of the Mesaverde formation of
Cretaceous age. This sandstone ridge is on the southern flank of
the large Split Mountain anticline; the ridge rises about 200 feet
above a nearly level plain cut on the underlying Maneos shale to the
north. :

Small areas of anomalous radioactivity occur at intervals along a
high-angle normal fault which cuts the sandstone near the ridge
crest. The fault trends nearly parallel to the sandstone outcrop
and dips steeply southward. Spotty radioactive anamolies are slso
present as much as several hundred yards south of the fault.

The Snow-Bonniebell group of claims was examined and sampled
in 1950 by E. P. Beroni and F. A. McKeown (1952, p. 14-20).

SAMPLES AND ANALYSES

Eleven samples were collected from the Snow-Bonniebell claim
group (table 6, p. 373). Three of these constitute a channel sample
across a limonite seam on the east wall of an opencut on the Bonnie-
bell No. 3 claim about a quarter of a mile south of the ridge crest.
Six other samples were taken in consecutive 1-foot segments across a
radioactive fault zone approximately half a mile east-northeast of
the opencut. In addition, 2 grab samples of radioactive limonitic
material were collected, 1 from the vicinity of the cut and 1 from the
fault zone.

All 11 samples contained less than 300 ppm of vanadium and less
than 10 ppm of cobalt and nickel. The concentrations of other
elements in these samples are shown in table 6.

The graphs in figure 36 indicate the variations in concentrations
of selected elements in the six samples collected across the fault zone.
The correlation coefficients for uranium and equivalent uranium with
respect to these elements are shown in table below.

Correlation coeffients, Snow-Bonniebell claims

{11 samples]
eU U - eU U
/5 T 4+0.04 '—0.40| Feecencanccaceo - 14-0. 38 14-0. 39
1% (1 S - 07 —. 08]AS e +.12 —.13
). § « W, 34.61 34-.65 -

t Possibly significant. % Probably significant,
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F1cURE 36.—Graph showing variations in equivalent uranium and in uranium and other metals in
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CONCLUSIONS

Compared to the wall-rock samples (F63-F64) on either side,
sample F65 from the iron-stained clay seam on the wall of the opencut
contains high concentrations of zine, copper, arsenic, molybdenum,
and uranium. Yet none of these elements shows significant correla-
tions with uranjum in the samples taken across the fault zone, half
a mile away (table, p 346). Manganese, on the other hand, which
shows no increase in concentration in the limonitic clay seam relative
to the wall-rock samples in the opencut, is the only element of the
group that correlates well with uranium in the fault zone. This may
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indicate that the elements concentrated in the clay seam were depos-
ited with the clay, but that the uranium and marnganese along the
fault were deposited by ground water circulating along this permeable
zone. It is, of course, also possible that the number of samples col-
lected was too small to be representative and that the apparent corre-
lations are merely coincidental.

In any event, the available data do not appear to indicate the
presence of any la,rge concentrations of uranium minerals in this area.

SILVER CLIFF MINE, NIOBRARA COUNTY, WYO.

The Silver Cliff mine is in sec. 7, T. 32 N., R. 63 W., half a mile
west of Lusk, Niobrara County, Wyo. The mine is at an altitude
of about 5,200 feet and is near the crest of a prominent hill which is
capped by dense brown quartzite of Cambrian age. The quartzite
lies unconformably on a Precambrian metamorphic complex which
consists of schist, gneiss, and quartzite and is intruded by pegmaftite
dikes. A high-angle northward-trending reverse fault that dips about
60° E. is exposed near the summit of the hill where Precambrian
rocks in the hanging wall have been moved into contact with the
quartzite of Cambrian age of the footwall.

The Silver Cliff mine was first opened in 1880; in addition to
uranium, gold, silver, and copper have been produced there. The
ore deposits are localized along the reverse fault and in fractured
quartzite of Cambrian age in the footwall. The uranium deposits
have been described by Lind and Davis (1919) and more recently by
Wilmarth and Johnson (1954).

SAMPLES AND ANALYSES

Five samples were collected from 1 locality about 50 feet southwest
of the entrance to the opencut leading to pit 1 (fig. 37 and table 7,
p. 374). The table below gives the correlation coefficients for equiv-
alent uranium with elements that were present in determinable
amounts in at least four of the samples.

Correlation coefficients, Stlver Cliff mine

[5 samples}
eU eU
/1 « 14 0. 72 | MO e 24+0. 60
[0 DU I 78V o o +. 53
CO e +.40 | Mn. e~ 21,63
AS o 24,65 Fe . +. 02

1 Possibly significant.
2 Probably significant.
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CONCLUSIONS

The relatively high correlations between equivalent uranium and
all the other elements tested, with the exception of iron, suggest
that these elements were introduced along the same open fractures in
the relatively dense impermeable quartzite and were then deposited
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“in films or coatings on the fractures. The brown quartzite contains
some indigenous iron oxide, as shown by rounded grains of hematite
in a thin section of sample F75; the barren red quartzite represented
by sample F77 contains several times as much iron, in the form of
primary red hematite, as any of the other four samples. This indige-
nous iron oxide could easily account for the lack of correlation between
uranium and iron. Sample F77 also contains an unusually large
amount of nickel (30 ppm) and of copper (150 ppm). Two grab
samples of the red quartzite, collected from separate localities a
thousand feet or more away from the mine workings, also contained
about 30 ppm of nickel and about 120 ppm of copper. These ab-
normal concentrations suggest that a certain amount of copper and
nickel, as well as iron, was originally present in the sediments from
which the quartzite bed was derived. The close association between
equivalent uranium and zine, copper, arsenic, molybdenum, and
manganese in samples from this deposit suggests that some or all of
these five elements might be useful as uranium indicators for pros-
pecting in this area.

GOLDEN GATE CANYON AREA, JEFFERSON COUNTY, COLO.

The Golden Gate Canyon area is in T. 35 S., R. 70 W., Jefferson
County, Colo. Most of the uranium prospects are near the bottom
of the canyon at an altitude of 6,500 to 7,000 feet.

Rocks exposed in the area consist of a thick series of steeply dipping
schists and gneisses of the Precambrian Idaho Springs formation.
These rocks have a regional trend of about N. 80° E.; they have been
cut by numerous faults and breccia “reefs’” which strike north-
westward and dip steeply.

Pitchblende and base-metal sulfides appear to have been localized
by the intersection of northwestward-trending faults or fractures
with certain favorable stratigraphic zones in the Idaho Springs
formation. The uranium deposits of the Golden Gate Canyon area
have been studied and described by Adams, Gude, and Beroni (1953).
Two of these deposits, at the Union Pacific prospect and at a road cut
near the portal of the Buckman adit, were sampled for this study.

SAMPLES AND ANALYSES

Ten samples were collected from the two localities examined (table
8, p.375); four of these constitute a discontinuous channel sample
across the radioactive zone in a road cut near the portal of the Buck-
man adit; the other six constitute a channel sample across the uranium-
bearing vein and breccia zone exposed near the collar of the shaft on
the Union Pacific property.
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All samples were analyzed for equivalent uranium, uranium, copper,
lead, zine, arsenic, antimony, and molybdenum. Correlation coeffi-
cients were determined for both uranium and equivalent uranium
with respect to the other six elements (table below).

Semiquantitative spectrographic analyses were made of the 10
samples in order to determine whether any elements, in addition to
the 6 tested geochemically, showed significant occurrence in relation
to uranium (table 9, p. 376).

Correlation coefficients, Golden Gate Canyon area

[10 samples]
eU U eU U
(o S ~0.24 4011 |ASoocoe +0.13  40.02
Pb_ oo —. 36 ~+.15(Sb_ o _.___. +.17 +. 06
Zn_____ . _____. +. 11 +.02|Mo______ . _. 1+.45 +.34
1 Possibly significant.
CONCLUSIONS

The correlation coeflicients calculated for all 10 samples appear to
indicate a very poor correlation between uranium and the other
metals, with the possible exception of molybdenum. However, when
the assay values for the various metals are plotted separately against
those of uranium and equivalent uranium for the two channel samples
(figs. 38 and 39), it is apparent that this is not true. In the samples
both from the Buckman adit and the Union Pacific prospect, the con-
tent of copper, lead, arsenic, and antimony, as well as molybdenum,
tend to vary directly with uranium content. The poor correlation
coefficients may be explained by the fact that the uranium content
was high relative to the other metals at the Buckman adit, but, at
the Union Pacific prospect the reverse was true. When the samples
from the two localities were pooled for statistical study, the highest
uranium assays did not correspond to the highest assays for the other
metals; consequently, the correlation coefficients for the pooled sample
were much lower than they would have been for either deposit had
the samples not been combined. This indicates a pitfall to be avoided
in the application of correlation coeficients to assay data. If too
many samples from different localities are combined in an effort to
obtain a significantly large number of analyses for statistical treat-
ment, the resulting correlation coefficients may obscure rather than
emphasize the relationships sought.

A study of the semiquantitative spectrographic analyses (table 9,
p. 376) suggests that silver, bismuth, yttrium, and ytterbium may also
be closely associated with uranium in these deposits.

468040—59——3
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DIAMOND J RANCH, EL PASO COUNTY, COLO.

The Diamond J ranch is about 10 miles north-northeast of Colorado
Springsin T. 12 S., R. 66 W. The deposit, on the north face of a low
hill, at an altitude of about 6,500 feet, was discovered in 1951 by H. E.
Burgess. It is in the nearly flat-lying Dawson arkose of Late Cre-
taceous and Paleocene age and consists of an irregular body of coarse
sandstone and arkosic conglomerate heavily impregnated with iron
and manganese oxide. It is very irregular in form with small local
“rolls”, has a northwesterly trend, and appears to be nearly 150 feet
long with a maximum width of about 25 feet and a maximum exposed
thickness of about 10 feet (fig. 40). L. R. Page and G. B. Gott made
a reconnaissance examination and sketch map of this deposit in 1952
(written communication).
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FIGURE 40.—Sketch map of radioactive-limonite zone on Diamond J ranch, showing sampled localities.

SAMPLES AND ANALYSES

Thirteen samples were collected from the deposit. Localities
sampled are shown on figure 40. All samples were analyzed for
equivalent uranium, uranium, zine, lead, copper, nickel, cobalt, anti-
mony, arsenic, molybdenum, manganese, and iron (table 10, p. 377).

The variation in concentration of equivalent uranium, uranium,
zinc, copper, arsenic, molybdenum, manganese, and iron for both the
vertical and horizontal samples is shown in figure 41.

. Correlation coefficients which were calculated for copper, zinc,
arsenic, molybdenum, manganese, and iron with respect to. both
equivalent uranium and uranium in all 13 samples, are given below.

Correlation coeﬁcients, Diamond J ranch

[13 samples]

. eU U . (173 . u
Cu.ooe. m———— 1—.0.66 —0.27 (Mo ____ -0.12 1-0.55
gn-fh-i} _______ - -%,13_ —.30(Mn_ . 2—.39 —.31
As ool —. 16 —.15[{Fe____..._. ————- — 09 —.34

1 Probably significant.
3 Possibly significant.
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tions from which they were deposited appear to have attacked the
quartz but not the feldspar, suggesting that these solutions may have
been alkaline rather than acid. At a later time uranium and possibly
silica were introduced along small fractures; the negative correlations
between uranium and the other elements suggest that the other ele-
ments were locally leached out at the same time uranium was deposited,
although there is no petrographic evidence of such leaching. The low
uranium content with respect to equivalent uranium in these samples,
particularly in sample F16, suggests leaching of uranium and residual
enrichment in its daughter products. This probably represents recent
ground-water action.

LUCKY BREAK IRON MINE, CHAFFEE COUNTY, COLO.

The Lucky Break iron mine is about a mile northwest of the junc-
tion of the Turret and Whitehorn roads in Chaffee County, Colo.
The deposit is at an altitude of about 9,000 feet, just south of the
crest of a small ridge. In the vicinity of the mine, dark irregular
bands of massive red and black iron oxides have replaced limestone of
Devonian and Mississippian age. This limestone has been intruded
by a large rhyolite prophyry sill a few hundred feet northeast of the
mine (fig. 42).
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Geology by W, R. Griffitts, 1950
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FIGURE 42.—8ketch map showing general geology of the area around Lucky Break iron mine. Geology
generalized from an aerial photograph. (Since this report was prepared, the unif shown above as un-
named limestone has been classified as the Leadville limestone and Dyer dolomite member of the Chaffee
formation, undifferentiated.)



RADIOACTIVE LIMONITE IN COLORADO, UTAH, WYOMING 357

According to K. G. Brill (1948, written communication) the deposit
is cut and offset by a north-northwestward-trending normal fault
which dips steeply to the east. Intense alteration in the vicinity of
the mine appears to have obscured this fault.

Development on the property in June 1953 consisted of a large
glory hole roughly 150 feet in diameter and 100 feet deep with a
short adit which provided access from a haulage road to the bottom
of the pit on the south side.

The surrounding area has been studied by W. R. Griffitts, who
accompanied the senior author to this locality in June 1953.

SAMPLES AND ANALYSES

Four samples were collected from the south wall of the pit a few
feet west of the adit (table 1). All four were analyzed radiometri-
cally for equivalent uranium and spectographically for 36 elements;
X-ray (powder diffraction) studies were also made on all four sam-
ples in order to verify the major mineral constituents (table 11, p. 378).

TaBLE 1.—Description and radioactivity and X-ray analyses of samples from the
Lucky Break iron mine

[Analysts: E. J. Fennelly and W. F. Outerbridge]

Analyses
Sample Locality Type Deseripticn .
e
(per- Mineral con-
cent) stituents

F1-TL-53....| 10 ft west of adit, on Grab...| Moderate reddish-brown | 0.002 | Hematite.
south wall of pit. to dusky-red fine-

grained hematitic iron
ore.
F1A-TL-531 | __ (S 1 S ..-do.._| Blackish-red ore with | .002 | Hematite, goethite,
moderate reddish-orange
and dark yellowish-
orange bands,
F2-TL~531.._] Fracture zone, 5 ft -.-do.._| Dusky-red fine-grained | .018 | Hematite, goethite,
west of adit, on hematitic iron ore. quartz,
south wall of pit.
F3-TL~531. ... [ G S JIO T, S SO, {6 1 .069 | Hematite, quartz.
1 For petrographic description see table 3.
CONCLUSIONS

Megascopically, there is little to distinguish the radioactive from
the nonradioactive material in this deposit. Examination of the
mine walls with a Geiger counter suggests that the most highly radio-
active material is localized along late fractures. Examination of a
section cut from the most radioactive specimen shows that small
fractures filled with late quartz are more common in it than in the
sections cut from nonradioactive material. A study of the spectro-
graphic data indicates a tendency toward enrichment in copper, zinc,
cobalt, beryllium, and yttrium and depletion in aluminum, titanium,
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calcium, magnesium sodium, potassium, barium, strontium, gal-
lium, and zirconium, in the more radioactive material. ‘

It thus seems probable that uranium was introduced . after the
original replacement of limestone by iron oxide. The data suggest
that the uranium was probably introduced along small fractures in
the previously formed iron oxide body by solutions containing large
amounts of silica and minor amounts of copper, zinc, and cobalt.. If
this hypothesis is correct, it could indicate the prox1m1ty of a uranif-
erous base-meta} sulfide body from which these splutions were derived.

OURAY HOT SPRINGS, OURAY COUNTY, COLO.

The Ouray hot springs deposits are: near-the bottom of a steep-
walled canyon near the southwest edge of Quray,. Colo,, just east of
the Uncompahgre River, at an-altitute of 7,700 feet.

.The tufa deposits from the springs are mterbedded W'lth Quaternary
s;ream gravel and overlie, Ouray limestone of Devonian, age on the
northwest side,of bhe nqrthea,stward t;'endlng Ouray fault. . 'J,‘bls fault
brings the Ouray limestone down agamst Precambrlan slates and
phyllites on the southwest. - - " .n o e

The Ouray hot springs are in "the area descmbed in Burbank’
report (Burbank, 1940), and their location is shown on his map.
These deposits are briefly described in a later report by Burbank and
Pierson (1953). i :

SAMPLES AND ANALYSES

Fi7ve éampleé' of tufa were collected from 2 localities 100 yards
apart. Three samples of tufa weve collected near the fault-which
is about 250 feet southeast of the.Canyon Creek road bridge over the
Uncompahgre River; the other 2 ‘were from the east bank of the
river about, 50 feet north of this bridge All five samples were analyzed
for equivalent uramum, urahium, zinc, lead, €Opper;: -nickel, cobalt,
molybdenum, arsemc, antimony, vanadium, manganése and iron.
Thé “uranium content of all samples was <20 ppm and the copperf
and nickel content was <10 ppm. Results.of the other.analyses are
shown in table 12, p. 879.

Correlation coeﬂi(nents were determlned for zine, antlmony, arsenic,
xﬁolybdenum manganese and iron’ Wﬂ’fh fespect to equwal" uranmm
in' alI ﬁve sa‘niple's as shoWIi below. bioer R o

'1'5' N E SAT ST

Correlatzqn coeﬁments, quy hot g})m

'h}gsi

oslent

11 ProBably Mightfbmis il vl oo lest Lo qineniy
2 Possibly significant.
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One sample of radioactive tufa collected from this deposit by Bur-
bank and Pierson was analyzed for uranium and equivalent uranium,
and also was submitted to semiquantitative spectrographic analyses.
This sample contained 0.11 percenteU and 0.001 percent U. Other ele-
ments detected were present in the following concentrations:

Element Percent 1
Moo XX,

Ba, Ca, Fe, 81, Sr, W._.___ . X.

Al As, Mg, Na. .. . X

Be, Cu, Mo, Sb, Ti, T, V, Zn____________ .. . 0X
Co, Pb, 2r o . 00X
L0 U U 000X

1 See Introduction, p. 340, for explanation of values,

CONCLUSIONS

The colloidal texture of manganese oxide, evident in polished sec-
tions, and the high positive correlation between equivalent uranium
and manganese suggest that the radioactive element was adsorbed by
colloidal manganese oxide hydrate and precipitated with it. The high
ratio of equivalent uranium to uranium suggests that the radioactive
element now present in these deposits is probably radium. The un-
usually large amounts of tungsten, molybdenum, arsenic, antimony,
and zinc in these samples also suggest the possibility of a uraniferous
base-metal sulfide ore body in the vicinity, from which radium has
been leached by the hot spring waters. Several silver-lead-zinc de-
posits occur in the Paleozoic rocks near the Quray fault, within a mile
of the Ouray hot springs (Burbank, 1940).

HAPUTA RANCH AREA, CUSTER COUNTY, COLO.

The Haputa ranch area is in the western foothills of the Wet Moun-
tains 4 miles east-northeast of Querida in Custer County, Colo. The
deposit, which was examined and sampled in detail, is a small open
cut at an altitude of about 9,250 feet. The deposit is in a northwest-
ward-trending shear zone cutting Precambrian amphibolite which has
been intruded by a biotite granite gneiss about 25 feet south of the
shear zone. An andesite dike, striking parallel to the shear zone, cuts
the amphibolite near its contact with the gneiss (fig. 43). Drill-hole
data indicate that this dike crosses the shear zone at a depth of about
100 feet. Thislocality has previously been examined by Christman
and others (1953, p. 10-12, 32) and it is described in their report as
“drill hole Ha~8.”

468040—59——4
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SAMPLES AND ANALYSES

Eleven samples were collected from the Haputa ranch area. Nine
of these are consecutive 1-foot channel samples across the radioactive
zone shown in figure 43; the other two are selected grab samples.
All 11 samples were analyzed radiometrically for equivalent uranium
and geochemically for zinc, lead, copper, nickel, cobalt, arsenic, anti-
mony, molybdenum, vanadium, manganese, and iron. In addition,
three of the more radioactive samples were analyzed chemically for
thorium. The results of these analyses are shown in table 13, p. 380.

A special sample of the thorium-bearing mineral was analyzed
spectrographically by Katherine E. Valentine, and the results of this
analysis were made available by R. A. Christman. The analysis
shows the following components:

Element Percent 1

Si, The e XX

Fe o e X.

Ba, Ca, Ce, Cu, La, Nd,Pb, Y________ .. X

Al, B, Co, Dy, Er, Eu, G4, Lu, Ni, Pr Yb_________________..__ .0X
Be, Mg, Mn, Mo, Sr, V, Zr_ e .00X
Ag, Cry T e .000X

1 See Introduction, p. 340, for explanation of values.

An exploratory diamond-drill hole cut the shear zone at a depth
of 140-160 feet beneath the exposure from which samples F18-F26
were taken. The core from this hole was analyzed spectrographically
by G. W. Boyes. Table 2 shows the concentrations of the same
elements in the drill core for which geochemical assays were made on
samples from the outcrop. The corrected sample lengths and equiv-
alent-uranium concentration of drill-core samples were taken from
Christman and others, 1953, p. 14, table 5.

The variations in concentration of equivalent uranium and selected
elements in the 9-foot horizontal channel sample taken at the outcrop
are shown in figure 44. Data are graphed only for those elements
that showed significant changes in concentration.

Correlation coefficients were determined for zine, lead, copper,
nickel, arsenie, antimony, vanadium, and manganese with respect to
equivalent uranium in all 11 samples for which geochemical assay
data are available (table below).

Correlation coefficients, Haputa ranch area

[11 samples}

14 U
/5 +0.21 | A8 . 14+0. 67
P 1, 76| Sb_ o 14,77
CUe e 1, 83 Vo e 1—,59
Ni Ll 2— 48| Mn. e —. 11

! Probably significant.
1 Possibly significant.
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graph shows that these particles are radioactive (pl. 42).

In some of the samples, the apparent dispersion of submicroscopic

T



364 CONTRIBUTIONS TO THE GEOLOGY OF TURANIUM

particles of a thorium mineral throughout quartz suggests that thor-
ium may have been introduced in solution by hot silica-bearing waters
and that some of it was precipitated simultaneously with the quartz.
The high positive correlation between equivalent uranium and lead,
copper, arsenic, and antimony suggests that either these elements are
present i the,thorium minerals or that they form other minerals, prob-
ably sulfides, which are closely associated with the thorium minerals.
The former hypothesis appears to be partly substantiated by the
relatively high concentrations of lead and copper reported in the
analysis of the pure thorium-bearing mineral and by the high correla-
tion coefficients coupled with low concentrations of antimony and
arsenic.! A comparison of the assay data from the drill-core samples
indieates a tendency toward enrichment in lead, vanadium, and man~
ganese near the surface but little change in the concentration of equiv-
alent uranium (which is directly proportional to thorium in this area),
copper, nickel, cobalt, molybdenum, and iron to a depth of 150 feet.

POWDERHORN DISTRICT, GUNNISON COUNTY, COLO.

The Powderhorn district is in T. 47 N., R. 2 W., Gunnison County,
Colo., at an average altitude of about 9,000 feet. Thorium occurs in
scattered pods and lenses in prominent northeastward-trending
silicified shear zones cutting Precambrian schist and gneiss. The
surface exposures of these zones are heavily stained with hematite
and limonite, and the country rock near them commonly has a bleached
appearance.

The Precambrian rocks of this area were described by J. F. Hunter
(1925), and the thorium deposits have been studied by Olson and
Wallace (1956).

SAMPLES AND ANALYSES

Twenty-two samples were collected from three localities in the
Powderhorn district, as shown in table 14, p. 381. Some of the samples
of radioactive vein material contained irregular finely porous areas.
Examination with a hand lens shows that many of the individual pores
consist of tiny, nearly square pits. This probably reflects the former
presence of pyrite.

All 22 samples were analyzed geochemically for zinc, lead, copper,
nickel, cobalt, antimony, arsenic, molybdenum, vanadium, manganese,

t Antimony and arsenic cannot be detected by ordinary spectrographic methods in concentrations of less
than 500-1,000 ppm, so it is not surprising that they were not reported in the spectrographic analyses.
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and iron. They were also analyzed for equivalent uranium, and two of
the most radioactive were analyzed chemically for thorium (table
14, p. 381).

The variation in equivalent uranium and some of the metals in
samples taken across the Little Johnny vein and in the more widely
spaced grab samples at the Jeanie No. 2 claim, is shown graphically
in figures 45 and 46. Fig. 47 illustrates the location of samples from
the Jeanie No. 2 claim relative to the vein.
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Correlation coefficients were determined for zinc, lead, copper,
antlmony, arsenic, molybdenum, vanadium, manganese, and iron on
all 22 samples (table below).

- Correlation coeflicients, Powderhorn district

[22 samples]
eU eU

n o 140.69 | MO m o oo e +0.31
Pb_ e N 4 B I 2 U 24-. 39
Cuo o S ;7 5.7 24, 46
Sb IO 1 85 | B e 24, 54
As . mmmmm—em 14,61

"t Probably significant,

2 Possibly significant,

CONCLUSIONS

The abundance of red quartz in the samples with a high thorium
content indicates, as in the sample from the Haputa ranch area, that
submicroscopic thorium-mineral particles may be disseminated
throughout the quartz and that they may have formed contemporane-
ously with it. There is a crude relationship between limonite colors
and thorium concentration. In general, the limonite stains change
from yellowish or grayish brown through fight brown and moderate
brown as the vein is approached, to a characteristic moderate to
dusky red in the high-thorium vein material. Petrographic studies
reveal the presence of hematite pseudomorphs after pyrite in the
high-thorium parts of the vein. This suggests a genetic relationship
between the thorium ore and sulfide deposits which is also suggested
by the relatively. high correlation between equivalent uranium and
iron, zine, lead, arsenic, and antimony. The. arsenic and antimony.
apparently are present as mmor constituents_of the thorium mineral,

W
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and do not form separate minerals associated with it. If this is true,
it explains both the high correlation of arsenic and antimony with
equivalent uranium and their low concentrations.

SUMMARY

The results of this study indicate that preliminary sampling of
radioactive-limonite outcrops and geochemical analysis of the samples,
followed by the determination of correlation coefficients from the
assay data, may reveal important relationships between the radio-
active element sought and other elements that may be associated
with it. These correlation coefficients may be used in two ways: to
eliminate randomly distributed elements and place emphasis on others
that seem to show high correlations in further geochemical or geo-
botanical studies, and to aid, by supplementing petrographic examina-
tion, in interpreting the origin and paragenesis of the ore deposits.

The results of petrographic studies of thin and polished sections of
selected samples are summarized in table 3.

TABLE 3.—Peirographic description of thin and polished sections cui from selected

samples
Sample Locality Desecription
F1A-TI-53..... Lucky Break iron QGrains of steel-gray hematite surrounded by red hematite rims
mine. in banded colloform goethite; numerous small angular quartz

fragments in ]gaoethite, and cavities filled with chalcedony,

F2-TL-53...c... do. Similar to F1A but contains less goethite; boundaries between

red and gray hematite are commonly gradational and undu-

lating, suggestive of replacement.

F3~TL-53cccee|eanan (4 [ S Contains more steel-gray hematite than F2; gray hematite,

followed by massive quartz which is embayed by micro-

breccia of red hematite, late quartz veinlets cut quartz
fragments.

F14-TL-53.__... Diamond J ranch....__| Angular fragments of quartz, orthoclase, and microcline in

matrix of dark-brown goethite, red hematite, and black wad

Whi(iht fills voids in iron oxides and is cut by late quartz

veinlets.

F16~TL-53. . .... U + [+ M Fewer fragments than F14, wad predominates over hematite

and goethite in matrix; some of goethite replaces red hematite,

some stains fractures in quartz and may be older than hema-
tite.

F17-TL-53....._ Haputa ranch area..._| Small euhedral apatite crystals in early quartz cut by veinlets

of late quartz containing voids filled with colloform goethite;

few rounded grains of gray hematite in quartz have goethite
rims.

F20-TL-53. . oo |eeee L 1 T Biotite, hornblende, quartz, and plagioclase with accessory

magnetite and apatite are cut by veinlets of rosy quartz and

later goethite.

F25-TL-53. ccee|oanee 4 e T, Altered feldspar fragments in rosy vein quartz contain few

1graim of tﬁlorite; quartz is cut by veinlets of red hematite and

ater goethite.

F36~TL-563. ... Powderhorn district...| Deep-red quartz with numerous small isometric pseudomorphs

of hetmatite after pyrite; late veinlets of clear quartz cut red

quartz.

F44-TL-53. - foeee L (s T Few large quartz grains with late quartz overgrowths in matrix

of fine-grained quartz alternating with bands of biotite;

goethite coats some quartz grains; few tiny specks of red
hematite or thorite in groundmass.

F46-TL-53. oo ns|anaae s [/ T Red quartz cut by clear quartz veinlets; small hematite pseudo-
morphs after pyrite in both red and clear quartz; microbreccia
of clear quartz and goethite cements fragments of early red
quartz.

Nodular masses of psilomelane with colloidal banding are cut
and partly replaced by dense massive hematite.

QCalcite and goethite with subordinate psilomelane; goethite is
younger than psilomelane; small cavities filled with late
quartz or barite.
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TaBLE 3.—Petrographic description of thin and polished sections cut from selected
samples—Continued

Sample Locality Description

F57-TL-53. ... Yellow Cat area._..._. Subrounded grains of quartz, chert, and limonite-stained
altered feldspar in a matrix of dark-brown goethite and
cryptocrystalline quartz.
F58-TL-53. - ooofoceos L 1+ T, Quartz grains smaller and more angular, and chert less abun-
dant than in F57, few grains of chalcedony; goethite cement
more localized and lighter brown; some red hematite grains;
gypsum fills fractures.
F61-TL-53. ---.do ----| Small rounded grains of quartz and orthoclase cemented by
cryptocrystalline quartz; cat by veinlet of brecciated red
hematite altering to goetﬁite cemented by late quartz.
F74-TL-53_.....| Silver Cliff mine__._.. Fine- to medium-grained rounded quartz grains in matrix of
yellowish-orange goethite replacing calcite; few grains of
magnetite and irregular masses of sooty chalcocite.
F75-TL-53. o _o|-oeo. do... Similar to F74, with calcite gredominant over goethite; quartz
grains are stained red, and a few grains of red hematite are
scattered throughout the matrix.
F78-TL-53. o[ co.o [ 1 SO Large angular quartz grains embedded in a matrix of yellowish-
orange to light-brown goethite and green malachite which is
younger than goethite; microbreccia of chalcocite and quartz
embays quartz grains,

No single element, for which geochemical analyses were made showed
consistently high correlations with uranium in all of the areas ex-
amined (table 4); however, in most of the uranium districts at least
one other element appeared to show a significant correlation with
uranium. In both thorium districts, on the other hand, high positive
correlations were shown between thorium and lead, arsenic, and
antimony. A larger number of thorium deposits should be studied
in order to determine whether this association is widespread or merely
an accidental result of the choice of areas for examination (table 4).

If an element which has distinctively colored alteration products,
such as copper, manganese, or cobalt, shows high correlation with
uranium or thorium in a given area, then those colors may be useful
as field guides to the prospector. The limonite colors observed by
the authors did not appear to be particularly useful field guides for
uranium. In general, the limonite stains on uranium-bearing out-
crops ranged from light yellow brown through moderate brown to
dusky brown; rarely were red iron oxides associated with uranium.
This in itself does not, however, constitute a useful field guide in most
areas because of the prevalence of brown limonite stains on barren
outcrops. In the thorium deposits, on the other hand, samples with
a high thorium content commonly exhibited a characteristic red color.
In some of the deposits, such as the Jeanie No. 2, the color of the
limonite stains changes from yellowish or grayish brown through
light brown to moderate or dusky brown as the thorium deposit is
approached.

Small areas of porous limonite were noted in some of the high-
thorium samples from the Powderhorn district, and examination with
a hand lens revealed numerous tiny square pits, which are thought
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to indicate the former presence of pyrite cubes in these areas. No
sponge or boxwork textures were apparent in samples from any of
the other localities examined.
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